Evaluation and Validation of Trust using Fuzzy Inference Model for Agent Based Systems
نویسنده
چکیده
It is compulsory for Agent based systems to interact with each other in order to achieve designated goals. Agents encompass several features i.e. competency, skills, achievement rate, trust etc. Trust is one of the important features for achieving the goal during communication. In real world, Trust is subjective in nature which is not useful in virtual communities. Virtual communities need precise value to trust on each other for realization of task. Fuzzy logic provides a way for definite conclusion for imprecise input information. We propose a system empowered with fuzzy logic to analyse trust. A fuzzy inference system is designed and implemented in MATLAB to include: (i) to reduce the subjectivity of trust; (ii) To help virtual community for interacting on the basis of trust. We also designed a graphical user interface to evaluate the trust. A validation is carried out by evaluating different agent based systems.
منابع مشابه
Developing a Model Based on Geospatial Information Systems (GIS) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for Providing the Spatial Distribution Map of Landslide Risk. Case Study: Alborz Province
Landslide is one of these natural hazards which causes a great amount of financial and human damage annually allover the world. Accordingly, identification of areas with landslide threat for implementation of preventive measures in order to confront against the instability of hillsides for reduction of potential threats and related risks is very important. In this research a new method for clas...
متن کاملLong-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)
Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...
متن کاملMEASURING SOFTWARE PROCESSES PERFORMANCE BASED ON FUZZY MULTI AGENT MEASUREMENTS
The present article discusses and presents a new and comprehensive approachaimed at measuring the maturity and quality of software processes. This method has beendesigned on the basis of the Software Capability Maturity Model (SW-CMM) and theMulti-level Fuzzy Inference Model and is used as a measurement and analysis tool. Among themost important characteristics of this method one can mention si...
متن کاملANFIS modeling and validation of a variable speed wind turbine based on actual data
In this research paper, ANFIS modeling and validation of Vestas 660 kW wind turbine based on actual data obtained from Eoun-Ebn-Ali wind farm in Tabriz, Iran, and FAST is performed. The turbine modeling is performed by deriving the non-linear dynamic equations of different subsystems. Then, the model parameters are identified to match the actual response. ANFIS is an artificial intelligent tech...
متن کاملSoft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors
Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...
متن کامل